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ABSTRACT

In this article we obtain the asymptotic formulas for eigenfunctions and
eigenvalues of the nonself-adjoint Sturm-Liouville operators with periodic
and antiperiodic boundary conditions, when the potential is an arbitrary
summable complex-valued function. Then using these asymptotic for-
mulas, we find the conditions on Fourier coefficients of the potential for
which the eigenfunctions and associated functions of these operators form
a Riesz basis in L2(0,1).

Let Li(q) be the operator generated in L2[0, 1] by the expression
o -y +q(@)y,

and the boundary conditions
&) y(1) = €y(0), y'(1) =€y (0),
where ¢(z) is a complex-valued summable function.
In this article we obtain asymptotic formulas of order O(n™") (I = 1,2,...))
for the n-th eigenvalue and corresponding eigenfunction of the operator L;(q)
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with ¢(z) € L;1(0,1), for t = 0, x, that is, for periodic and antiperiodic bound-
ary conditions. Note that in classical investigations, in order to obtain the
asymptotic formulas of order O(n™!) it is required that g(z) be (I — 1) times
differentiable (see [2,3]). Then using these asymptotic formulae, we find the
conditions on Fourier coefficients g, = (q(x),e"2™*) where (.,.) denotes inner
product in L(0,1) of g{z) for which the root functions (the eigenfunctions and
associated functions) of L;(q), for t = 0,7, form a Riesz basis in L(0,1). Note
that the periodic and antiperiodic boundary conditions are regular boundary
conditions, but are not strongly regular boundary conditions. Therefore, in
general, the eigenfunctions and associated functions of Lo(q) and L,(g) do not
form a Riesz basis; they form a basis with brackets in Ly(0,1) (see [4], [5]). In
this paper we prove that if

(3) lim 207

n—oQ nQ2n

= 0, q2n ~ 4-2n,

then the eigenfunctions and associated functions of Ly(g) form a Riesz basis in
L5(0,1), where a,, ~ b, means that ¢; | b, |<| an |[< ¢2 | by |, foralln =1,2,....
Here and in subsequent relations, we denote by ¢, ( m = 1,2,...) the positive
constants whose exact values are inessential. Similarly, if

In|n|

“ om0 T

then the eigenfunctions and associated functions of L, (q) form a Riesz basis in
Ly(0,1).

It is well-known that (see formulas (47a), (47b) on page 65 of [3]) the eigen-
values of the operators Lo(q) and L,(q) consist of the sequences {\, 1}, {An2}
and {n,1}, {tn,2} satisfying

(5) An; = (2nm)? + O(n'/?)
and
(6) fnj = (2nm + 1) + O(n'/?),

for j = 1,2. From these formulas one can easily obtain the following inequalities:
(7) Mnj — (27k)% > 12(n — B)7l|2(n + k)7 — c3n/? > eqm,
(8) litn,j — 27k +7)2| > [2(n — k)7||2(n + k + 1)7| — esn'/? > con

forj=1,2k#n;k=0,1,...; and n > N, where we denote by N a sufficiently
large positive integer, that is, N > 1. To obtain the asymptotic formula for
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eigenvalues )\, ; and corresponding normalized eigenfunctions ¥, ;(x) of Lo(g),
we use (7) and the well-known relation

@) (A — (270)2) (T x (), €7™™) = (g(2) T (), €2™™7).

Moreover, we use the following relations:

(10) (g(2) T, (x), ™) = Z (T (@), e2mntm)z),
m=—00
(1) (a(x) Ty (), €272)] < 4M,

forn € Z and N >> 1, where M = sup,,c 7 |¢n|- These relations are obvious for
g(x) € L2(0,1). For ¢(z) € L1(0,1), see Lemma 1 of [6]. Note that g, — 0 as
|n| = oo and, without loss of generality, we assume that go = 0.

Using (10) in (9) we get

o0

(12) (An,j = (QWn)Q)(‘I’n,jaenmz) = Z in(‘l’n,j,e”"("‘"l)”).

n1=—o0,

ny#0
Now isolating the term in the right-hand side of (12) containing the multiplicant

U, i(x),e ™) (ie., case ny = 2n), replacing
?]

) 2r(n—n1)z
) 2m(n—ny)x (Q(.’E)\I’n,] (J")7 e )
(\IJ’I’L,] (33), € ) by /\n’j — (27F(TL — nl))2 for nq # 2n

(this replacement can be obtained from (9) by taking n and n — n; instead of
N and n) and using (10) for the numerator of the last fraction, we obtain

(/\n,j - (27rn)2)(‘1/n,j($)7312”n2) _ q2n(\IJn,j(I),e—i27mx)

(13) _ i qnlq’%(\l,n,j(x)’ei27r(n—n1*nz):c)
An,j — (2m(n —nq))?

ny]ma=—oc
n1#2n

Note that, since ¢o = 0, here and in the subsequent relations the sums are taken
under conditions ny,ns,... # 0. Now isolating the terms on the right-hand side
of (13) containing one of the multiplicants (¥, ;(z),e?™®), (¥, ;(z), e~ 2"")
(i.e., cases ny + ny = 0,2n) and replacing

(\I/nj(x) 121r(n ny—ns z) by (Q(.’L')\Pn](x) i2m(n~ni1—no)z

An 7 (27r(n —n;— n?))2

for ny+ng #£0,2n
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we obtain

()\nj - (27Tn)2)(\llnj(x) i21rn3:) _ q2n(\I" ‘(m),e—ﬁﬂnz)
Z qnlq nl(\I'n,J(x) ez?rm:) z Qn1Q‘2n nl(‘I’ (@), g~i2rnz)

= — (2n(n — ny)) Bvenil — (2m(n — ny))?
n]#2n ny#2n
(14) — i In1qns (q(x)\lln,j (ZL‘), ei2r(n-m —nz)x)

(Ang =~ @m(n = n1))2)(An; — (27(n — n1 = n2))?)

ny,ng=—00
n1#E2n,n)+n9#E02n

Repeating this process m-times (i.e., using (10) in the numerator of the fractions
on the right-hand side of (14) and isolating the terms containing one of the
multiplicants (¥, ;(z),e2™®), (¥, ;(z),e ™) etc.), we get

(15) (Anj — (271)2 = A On ;) (T 5(), €2777)
~(@2n + Bm(An ) (¥ni(2),e ™) = Ry,
where An(An;) = 3Ly k() Bn(Ang) = Eiy beAns),

qn, an lQngQ-ny—ng—-—mnyg
ar(An,i) = )
k( n,J) nlﬂ; k[/\nJ (27r(n nl 2] [ ) —(27r(n—n1 _..._nk))2]
qn qnz Qg n—ny—ng - —np
bk A ,’) = ! 3
( " nl,'f;n.,nk [)‘ (27!‘(?1 nl 2] [)‘ o] (27r(n A nk))2]
R — Z q?’hq’nxz ot 'Q'qunm-{q (Q(-T)‘I’ng (x)’ez‘27r(n—n1—---—nm+1)z)
" Pn,i—@r(n = 11))2] - [Anj = @7(n — 11 = = nmy1))?]

71,102,y "m+1

Here, the sums are taken under the conditions
S
ns 0, an #0,2n
i=1

fors=1,2,...,m+ 1. Using (7) we get the estimations

_ In|n|\* _ In|n|\* _ In |n|\m+1
19 a=0(("")) n=0((%")) E==0((5")")
In the same way, the relation
(17) (Anj = 2mn)? = Ay (An i) (T j(2), €7272)
~(g=2n + By (Mnj)) (¥ j(2),€2™) = R,
can be obtained, where 4, (A, ;) = She; @ (Anj)s B (M) = Sopey by (Ans),

! q’n1 an ’ anq ny—ng—-—ng
Anj) =
ag(An,j) Z Pni—Qr(n+m1))2]- - [Any — @r(n+ng + - +ni))?)

n1,M2,...,k
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: qnlqnz e anq—2n—n1 —Ng - —Ng
b.(An,;) =
KO = D TR n Doy = Orn 4 7 F T

1,N2y 0y

a8) =0y b= oIl g - o milymeny,

n n n

Here, the sums are taken under the conditions
§
ns#0, ) n;#0,-2n
j=1

fors=1,2,...,k.
It follows from (7), (9) and (11) that

- (4M)? 1
Y @@= Y s = 0(5).
k€Z.k#n,—n kEZ k#n,—n [)\n,j - (27!']{:)2]2 <n )

Therefore, ¥, ;(z) has an expansion of the form
(19) ‘Pn,j (.T) — un’jei%rn:c + 'l),w'e_i?’mz + h(l‘),

where tn,; = (¥n;(2),€27%), vn; = (¥ny(2),€™2™), [h(@)]] = O(1/n),
1
(20) [ +lonsl? =1+ 0(5)-

Now using (16), (18), (20) in the system of equations (15), (17) we find asymp-
totic formulas for eigenfunctions ¥, ;(z) and eigenvalues A, ; of the operator
Lo(q) with g(z) € L1(0,1), and prove that if conditions (3) hold then the eigen-
functions and associated functions of this operator form a Riesz basis in L(0, 1).

THEOREM 1: Let the conditions (3) hold. Then:
(a) All sufficiently large eigenvalues of the operator Lo(q) are simple. They
consists of two sequences {An1 : n > N} and {\, 2 : n > N} satisfying

21) A = (2nn)? + (~1)'p, + 021,

for j = 1,2, where p, = (qanq—21)"2.

The corresponding eigenfunction ,, ;j(x) satisfies

22 Oni(r) = 2™ 4 oy, ;672 L O(1/n),
i J
where
(23) an,j ~ ].,
(=1)7py In|n|
24 Qn,i = +0 ,
@Y ™ dan (nfhn)
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for j=1,2.
(b) The root functions of Lo(q) form a Riesz basis in Ly(0,1).

Proof: First we prove that if conditions (3) hold, then
(25) Up,j ~ Unj ~ 1,

In |n|
(26) Ang = (2mn)? = a;pn + O(=1),

for j = 1,2, where a; = £1 and uy j, v, ; are defined in (19). From (15)-(18)
we obtain the system of equations

In|n
(27) (Anj = 27 unj = Gonvnj + o(—nU),

In|n
(28) (/\n,j - (27!"!1)2 )vn,j = q_znun,j + 0( ’)’|L I)

It follows from (20) that at least one of the numbers |v, ;|, |vn ;| is greater than
3. Assume that |v, ;| > 1. Then from (28) and (3) we obtain |, ; — (2mn)?| <
¢7|g—2n|. Moreover, the inequalities |u, ;| < 2 (see (20)), |vn,;| > 1, and (27)
imply that [\, ; — (27n)?| > cs|g2,|. Hence using these inequalities and (3) we
obtain

Injn|

(29) )\n,j - (27”7«)2 ~ gan ~ Q_2n ™~ Pp, lim 0.

n—0o NPy,

This with (27) implies that u,; ~ v, ;. Therefore (25) follows from (20).
Now dividing both sides of (27) and (28) by uy, ; g2n and (M ; — (271)%)un j,
respectively, we get

Vnj _ Any — (27m)? Injn|y g-2n In |n]
(30) ;T_t; B d2n * O( ngon ) - An,j - (27‘&'71)2 * O( ngzn ) )
From here, using (29), we get (26).
The proof of (a). Suppose A, ; (where n > N > 1) is multiple. There are
two possible cases:
1. There is an associated function ¥ ; ;(x) corresponding to the eigenfunction
¥, ;(x), that is,

(31) (Lo = An,j) ¥ ;(2) = ¥ 5(2).

Since the boundary condition (2) for ¢ = 0 is selfadjoint, A, ; and ¥, ; are an
eigenvalue and an eigenfunction of the adjoint operator L. Therefore, multi-
plying both sides of (31) by ¥, ; we get (¥, ;(z), ¥, ;) = 0. This with (19)
implies the equality u, jvn ; = O(1/n), which contradicts (25).
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2. There are two eigenfunctions corresponding to A, ;. Then all solutions of
the equation

-y +q(@)y = Aoy
are eigenfunctions. In particular, the solution
y(@,An,j) = €79% + O(1/n) = €™ + O(1/n),
where p,; = (Ay;)/2 = 2mn + (1/n) (see page 52 of [3]), and (26)), is an
eigenfunction. In (27), instead of using ¥ ;, taking this eigenfunction we get

Ang = (2m0)? + O(I—IIA—M),

which contradicts (29). Thus the eigenvalues A, ; for n > N are simple and
satisfy (26). Now, in order to obtain (21) from (26) it remains to prove that
ay # ag, say a; = —1,as = 1. Suppose a; = az = —1. Then (26), (27) yield

In|n|

In|in
(32) “PrUn,1 = G2nUn,1 + O( )’ —PnlUn2 = @2nUn2 + O( le, |)

Multiplying both sides of the first and second equalities by —v,2 and vy, 1,
respectively, and then summing the equalities, we get

lnln|).

(33) Un,1Vn,2 — Un2Un,1 = O(
NPn

On the other hand, since A, ; and ¥, ; are an eigenvalue and an eigenfunction
of adjoint operator L§ and A, 1 # A, 2, we have

(34) 0= (¥n1,¥n2) = Up1Vn2 + Un2Vn1 + O(1/n)

(see (19)). It follows from (33), (34), (29) that

Un,1VUn,2 = O(M) = 0(1),
npn
which contradicts (25). If we suppose that a; = ag = 1, then, in the same way,
we obtain the same contradiction. Thus one of these numbers, say a;, is —1
and the other is 1. The formulas (21) are proved. Since A, ; satisfies (21), for
J =1, the first equality in (32) holds. Therefore

(35) zjn—Jzi’l+0(M)'

Un,1 q2n Nq2n
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Denoting an, j = Vp,j/tn,; and @n () = ¥y j(x)/un,;, from (19), (25) and (35)
we obtain (22), (23) and (24) for j = 1. Taking into account that A, o satisfies
(21) for j = 2, in the same way we get the proof of (22), (23) and (24) for j = 2.

The proof of (b). Now we prove that the eigenfunctions ¢y ; = ¢9 ; and asso-
ciated functions ¢¥ ; (wheren =1,2,...,and k = 1,2,...,3(n, j)) of Lo(q) form
a Riesz basis in Ly(0,1). For every f(x) € L3(0,1), the asymptotic formulas
(22), (23) yield

N s(nj) 2 2 00
(36) SO SNEEID D D (el < oo
n=1 k=0 j=1 J=1ln=N+1

Let xn; = x%’j and sz,j’ where k = 1,2,...,t(n,j) be the biorthonormal
system of eigenfunctions and associated functions of L§. Clearly xn j(z) =

©n,;(@)/(¥n,j, Pry) for n > N. Therefore, using (22), (23) we get

N t(ng) 2 2 00
(37) SO IEEN Y D 1 xn)P < oo
n=1 k=0 j=1 j=1n=N+1

Since
{wﬁ,j :k=0,1,2,...,8(n,7);5=1,2;n=1,2,.. .},

and the biorthonormal system
(5 k=0,12,...,t(n,5)si =1, %n=1,2,..}

are total (see chap. 1, sec. 3 of [2]), by the well-known theorem of Bari (see
(1], chap. 6), the inequalities (36) and (37) imply that the system of the eigen-
functions and associated functions of Lo(q) forms a Riesz basis in L,(0,1). The
theorem is proved. |

If instead of (3), (7), and (9) we use (4), (8) and
(38) ([J,N,j — (27rn + 7F)2)((I)N’j (;1;), ei”(2n+1)$) — (Q($)¢’N,j (.’E), eiﬂ'(2n+1)z),

where ®y ;(z) is a normalized eigenfunction of L,(g), and arguing as in the
proof of Theorem 1, we obtain

THEOREM 2: Let conditions (4) hold. Then:
(a) All sufficiently large eigenvalues of the operator L, are simple. They
consist of two sequences {1 : n > N} and {pn 2 : n > N} satisfying

o, 1
(39) pin; = (2mn + )% + (=1)p, + 0( nTL"I)
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for j = 1,2, where p, = (g2n419-2n-1)"/2. The corresponding eigenfunction
én,;(x) satisfies

(40) ¢n,j(w) — ei(27m+1r):r: + a;l1je—i(27rn+1r)a: + O(I/TL)

for j = 1,2, where

(4%

: o _ (=Dp, +of In |n| )

) 1’ o .
™I ™ G2n+41 NG2n+1
(b) The root functions of L,(q) form a Riesz basis in L(0,1).

Now to derive the asymptotic formulas of arbitrary order for eigenfunctions
and eigenvalues of the operators Lo(q), Lr(q) with ¢(z) € L1(0,1), we define
successively the following functions:

Fo; =0, Goj=pn, Enm;=2mn)?+Fn;+(~1YGn,;,

1 ,
Fr; = §(Ak(En,k—1,j) + Ak (Enk-1,5))s
Gi,j =

1 7 4 1
[Z(Ak(En,k~1,j)—Ak(En,k—l,j))2+(Bk (Enyk-1,5)+@2n) (Bi(Enye—1,7)+-2n)] 2

form=0,1,2,...,,and k = 1,2,..., where j = 1,2 and the functions A’k, Ax
are defined in (15), (17). Moreover, we use the functions Ay , B} which are
obtained from A,,, B, respectively by replacing g,, with e?7(n=n1)z,

THEOREM 3: If conditions (3) hold, then the eigenvalue Ay, ; and the eigenfunc-
tion ¢y, j(z) of Lo(q) satisfy the following formulas:

(41) Anyj = Enm,j+ O((l_n_rlzl_i)m"’l),

Pn,j(x) =
(42) ; ! i
€™ + ay ;672 + AL (Enm,j) + 0n i B (Enm,;) + O((%ﬁ) )

forj=1,2andm=1,2,..., where

Un.j
Onj = =

Un,j q2n + Bm(En,m,j)

Fing + (=1)Cmyj = Am(Bnmyj) O(i(ln Inl)m“)
Q2n n
If conditions (4) hold, then the eigenvalue yi,, ; and the eigenfunction ¢, j(z)

of L(q) satisfy formulas which are similar to (41) and (42).



122 N. DERNEK AND O. A. VELIEV Isr. J. Math.

Proof: Arguing as in the proof of (30), using (15), (17) instead of (27), (28),
and denoting A = A, ; — (27n)?, we get

n.j A—Ap(Anj) 1 /1 m+1
= RO o= (5)™)

Qon n
_ (@20 + Bn(Ony)) 1 (ln|n[ym+
“ - SerantoGmET) )

Solving this square equation with respect to A we obtain

Mg = @10 = 2 (AnOhn) + A (ns)) F [7(Am (i) = A Ohn.)?

(44)  + (BrnOng) + @0) (Bin(hns) + q_20)) + O(qzn(ln,L"' )"

Here, the upper and lower sign is taken for 7 = 1 and j = 2, respectively, since
the expression in the square brackets is

In|n
@ang—2n + O(qzn - I) = qang—2n(1 + o(1))

(see (3), (16), (18)), and (21) holds. Thus in (44) the F can be replaced by
(—1). Now we prove (41) by induction. It is proved for m = 1 (see (21)).
Assume that it is true for m = k — 1. Substituting the value of A, ;, given by
this formula for m = &k — 1, in the right-hand side of (44) for m = k and using
the relations

s O (21)) = e 0( (1)),
(45) A;(En,k_l,j+0((1n nl)’“) )= A(E nk_l,j)+0((lnn”l)k+l>,
BBy +O((2) )y = Butensn) o (51)™).
s+ O (2 = B+ o (22)),

we get the proof of (41) for m = k. Note that the validity of these relations can
be easily verified by using the obvious equality

[e0]

2

ny=-o00,
ny#0,2n

1 1
Enpo1; +O()k) — @n(n —n1))?  Bnp-1,5 — 27(n —m1))?

-o((22)™),




Vol. 145, 2005 RIESZ BASISNESS OF ROOT FUNCTIONS 123
Now we prove (42). Writing the decomposition of ¥, ;(x) as
{€i27r(n—n1):c ‘ny € Z},

we obtain

00
(46) ‘I‘n,j(fﬂ) . un’jeianx — Z (‘I’n,j(l‘), ei21r(n—n1 )z)eiZW(n—nl)z-
np=-—o0,

ny#0

The right-hand side of (46) can be obtained from the right-hand side of (12)
by replacing g, with e?27(»="1)2_ Since we obtained (15) from (12) by iteration,
by doing the same iteration we obtain

. _ Li2rnz p—i2mn
¥y,,5(T) =tn,je + U j€

(47) * ln|n| m+1
Ftin A5 Ong) + 0By On) + O () )
from (46). Dividing both sides of (47) by u,; and using (43), (41), (45) we get
(42).
To obtain the asymptotic formulas for the eigenvalue p, ; and the eigen-
function ¢y ;(z) of L(g), we use (4), (8), (38) and Theorem 2 instead of (3),

(7), (9) and Theorem 1 and repeat the proof of (41) and (42). |

References

[1] 1. T. Goghberg and M. G. Krein, Introduction to Theory of Linear Nonselfadjoint
Operators in Hilbert Space, Nauka, Moscow, 1965.

[2] V. A. Marchenko, Sturm-Liouville Operators and Applications, Birkhduser Verlag,
Basel, 1986.

[3] M. A. Naimark, Linear Differential Operators, George G. Harap & Company,
London, 1967.

[4) A. A. Shkalikov, The basis property of eigenfunctions of an ordinary differential
operator, Uspekhi Matematicheskikh Nauk 34 (1979), no. 5(209), 235-236.

[5] A. A. Shkalikov, Boundary value problem for ordinary differential equations with
a parameter in the boundary conditions, Trudy Seminara imeni I. G. Petrovskova
9 (1983), 190-229.

[6] O. A. Veliev and M. Toppamuk Duman, The spectral expansion for a nonselfadjoint
Hill operator with a locally integrable potential, Journal of Mathematical Analysis
and Applications 265 (2002), 76-90.



