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ABSTRACT 

In this article we obtain the asymptotic formulas for eigenfunctions and 
eigenvalues of the nonself-adjoint Sturm-Liouville operators with periodic 
and antiperiodic boundary conditions, when the potential is an arbitrary 
summable complex-valued function. Then using these asymptotic for- 
mulas, we fred the conditions on Fourier coefficients of the potential for 
which the eigenfunctions and associated functions of these operators form 
a Riesz basis in L2(0, 1). 

Let Lt(q) be the operator  generated in L2[0, 1] by the expression 

(1) -y" + q(x)y, 

and the boundary  conditions 

(2) y(1) = eUy(O), y' (1) = eUy '(0), 

where q(x) is a complex-valued summable  function. 

In this article we obtain asymptot ic  formulas of order O(n -l) (l = 1, 2 , . . . , )  

for the n-th eigenvalue and corresponding eigenfunction of the operator  Lt (q) 
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with q(x) E LI(0, 1), for t = 0,~r, that  is, for periodic and antiperiodic bound- 

ary conditions. Note that in classical investigations, in order to obtain the 

asymptotic formulas of order O(n -l) it is required that q(x) be (l - 1) times 

differentiable (see [2, 3]). Then using these asymptotic formulae, we fmd the 

conditions on Fourier coefficients qn = (q(x),e i2~nx) where (., .) denotes inner 

product in L2 (0, 1) of q(x) for which the root functions (the eigenfunctions and 

associated functions) of Lt(q), for t = 0, Tr, form a Riesz basis in L2(0, 1). Note 

that the periodic and antiperiodic boundary conditions are regular boundary 

conditions, but  are not strongly regular boundary conditions. Therefore, in 

general, the eigenfunctions and associated functions of L0 (q) and L~ (q) do not 

form a Riesz basis; they form a basis with brackets in L~(0, 1) (see [4], [5]). In 

this paper we prove that if 

In ]n I 
(3) lim - 0, q2~ "~ q-2~, 

n--+oo r t q 2 n  

then the eigenfunctions and associated functions of Lo(q) form a Riesz basis in 

L2(0, 1), where an "~ bn means that Cl ] b~ I<[ an ]< c2 ] bn [, for all n = 1, 2 , . . . .  

Here and in subsequent relations, we denote by Cm ( m = 1, 2 , . . . )  the positive 

constants whose exact values are inessential. Similarly, if 

In Int 
(4) lim - -  - -  0 ,  q 2 n + l  "~ q - 2 n - 1 ,  

n ~ o o  r t q 2 n +  1 

then the eigenfunctions and associated functions of L~ (q) form a Riesz basis in 

L2(0, 1). 
It is well-known that (see formulas (47a), (47b) on page 65 of [3]) the eigen- 

values of the operators Lo(q) and L~(q) consist of the sequences {An,l}, {An,2} 

and {#n,1}, {#n,2} satisfying 

(5) 

and 

(6) 

Z~n, j ---- (2nTr) ~ + O(n 1/2) 

].tn, j : (2nTr + 7r) 2 + 0(nl /2) ,  

for j = 1, 2. From these formulas one can easily obtain the following inequalities: 

(7) I)~,j - (27rk)21 > 12(n - k)7~l12(n + k)Tr I - c3n 1/2 > c4n, 

(8) ]#n,j - (27rk + 7r) 2 ] > [2(n - k)Tr]]2(n + k + 1)Tr] - cbn 1/2 > c6n 

for j = 1, 2; k ~ n; k = 0, 1, . . . ;  and n _> N, where we denote by N a sufficiently 

large positive integer, that  is, N >> 1. To obtain the asymptotic formula for 
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eigenvalues An,j and corresponding normalized eigenfunctions q2n,j (x) of Lo (q), 

we use (7) and the well-known relation 

(9) (/~N,j -- (27crt)2)(~N,j(x),e i2rnx) = (q(x)kON,j(x),ei2~rnx). 

Moreover, we use the following relations: 

o o  

(10) (q(x)q2N'J(x)'ei27rnx)= E q-m(qYN'j(x)'ei2~(n+m)x)' 
? $ t  ---- - -  O 0  

(11) ~ 2 ~  I(q(x)ff2N,j(X), e )1 < 4 / ,  

for n E Z and N >> 1, where M = supnez Iqnl. These relations are obvious for 

q(x) E L2(O, 1). For q(x) E L1(0,1), see Lemma 1 of [6]. Note that  qn -4 0 as 

In I -4 ¢c and, without loss of generality, we assume that  qo = 0. 

Using (10) in (9) we get 

o o  

(12) (.kn,j - (27cn)2)(~n,j,e i2"nz) = E "~ (if2 ,~i2r(n-nl)x~ t / n  I \ n ~ J  , ~ ] • 

n l = - ~ ,  
a l ~ 0  

Now isolating the term in the right-hand side of (12) containing the multiplicant 

(~n, j(x) ,  e -~2~nx) (i.e., case nl = 2n), replacing 

(q2n,j(x),e i2È(~-n~)x) by (q(x)q2n'J(x)'ei2"(~-n~)x) for nl ~ 2n 
.kn, j - (27c(n - hi)) 2 

(this replacement can be obtained from (9) by taking n and n - nl  instead of 

N and n) and using (10) for the numerator of the last fraction, we obtain 

(13) 

(A~,¢ ( 2 ~ n ) 2 ) ( ~ j ( x ) , e  ~2"~) "~ 'x  ~ e - i 2 " ~  - , - q 2 ~ (  n , j [  ) ,  ] 
( x )  

= E qnlqn2(~n'J(x) 'ei2~(n-nl-n2)z) 
° ~ , ° ~ = _ ~  ~n,~ -- ( 2 ~ ( n  -- n l ) ) ~  

n . l - f i 2 n  

Note that, since qo = 0, here and in the subsequent relations the sums are taken 

under conditions nl ,  n2 , . . .  ¢ 0. Now isolating the terms on the right-hand side 

of (13) containing one of the multiplicants ( ~ , j ( x ) ,  ei2"nz), (~n,j(x), e -i2Èn~) 
(i.e., cases na + n:  = 0, 2n) and replacing 

b" (q(x)~2n,j(X), e i27r(n-nl - - n 2 ) X )  

(¢n'~(x)'e~(~-~l-~2)x) ~ ~--~,J--~-~;---~--~--~F for nl+n2 # 0,2n 
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we obtain 

( ~ , j  - ( 2 - n ) ~ ) ( ~ , j ( x ) ,  e ~2"~x) - q2~(q,~,~(x), e - ~ " ~  ) 
oo i 2 r n x  oo --i2v:nx q~q_n~('~,j(x),e ) qn, q~,~-,~(~n,~(x),e ) 

n 1 ~ 2 n  n 1 ~:2n 

qn~ q~(q(x)  ~ , j ( x ) ,  e ~ ' (n- '~ ' -~)~ ) 
( 1 4 )  : E ( A n ,  j --  ( 2 7 i - ( n  - n i ) ) 2 ) ( A n  j - (27 I ' (7 t  - n l  - 7 t 2 ) ) 2 ) "  

tzl , n 2 ~ - o o  
n 1 ~ 2 n  ,n 1 T n 2  :~0 ,2n 

Repeat ing  this process m-t imes (i.e., using (10) in the numera to r  of the fract ions 

on the r ight-hand side of (14) and isolating the terms containing one of the 
[ ~  { -~  e i 2 r n x ~  e - i 2 r n x )  multiplicants ~ n,j~xj, j, (ff2n,j(x), etc.),  we get 

(15) (An, j -- (2~n) 2 - -  A m ( , ~ n , j ) ) ( f f 2 n , j ( x ) ,  e i2rnx) 

- ( q ~  + Bm(An,~))(~,5(x), e - ~ )  = Rm, 

m m b where Am()~n,y) = ~ k = l  ak(An,j),  Bm()~n,j) "-~ ~ k = l  k()~n,j), 

n~2,. qnl qn2 "'" qn~ q -h i -n2  . . . . .  n~ a~(Anj) = 
nl  . . . . .  nk[)~n, j  --  ( 2 7 1 - ( n  - -  n l ) ) 2 ]  . . .  [,~n,j --  ( 2 7 I - ( n  - -  n 1 . . . . .  n k ) )  2] 

qm qn2 " " " qnk q2n-m-n2  . . . . .  n~ 
~ ( ~ ' 3 )  = ~ [~,~ -- (2~(n -- n~))21 . . .  [~,3 -- (2~(n -- n l  . . . . .  nk))~}' 

nh~2~...~?~k 

' ~  qn~qn:'" "qn..qn,.+,(q(x)ff2n,j(x), ei2~(n-n' . . . . .  n,.+l)x) 

Here, the sums are taken under  the conditions 

8 

ns 7 £ O, E nj  ~ O, 2n 
j = l  

for s = 1, 2 , . . .  , m  + 1. Using (7) we get the est imations 

( ( ~ n _ ] )  k ( ( ~ _ ~ )  k O ln]nl m ÷ l  

In the same way, the relat ion 

(17) (A~,j - (2~n) 2 - A m ( A n , j ) ) ( ~ , j ( x  ), e -i2"'~x) 

- ( q - 2 ~  + B'm(A~,j))(~n,j(x),  e i2"n~) = n'm 

can be obtained,  where Am(An,a ) = ~ k m l  dk(An,j ), Bm(A~,j  ) = ~'~k=l b'k(An,J), 

' ~ ~ qnlqn2 " " 'qnkq-n l -n2  . . . . .  nk 
a k ( n , j )  =nl  . . . . .  n2z~, n~ [ A n , j - ( 2 ~ ( n  + nl))2] . . .  [An,j - (2~(n + n l  + - . "  + nk))2] ' 
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' E qnl qn: "'" q,~ q-2n-nl-n2 . . . . .  nk 
bk(An'j) =,u . . . . .  n : ,  nk [Anj - (21r(n + nl))2] . . .  [An,j - (2r(n  + nl  + ' - "  + nk))2] ' 

' o(([~--~))  ' o ( ( [ ~ ) )  ' o ( ( ~ - ~ )  ) (18) a k  = k b : k R - -  m + l  
' k ' m " 

Here, the sums are taken under the conditions 

8 

ns ~ 0, E nj ~ 0,--2n 
j----1 

for s = 1 , 2 , . . . , k .  
It follows from (7), (9) and (11) that  

(4M)2_-- ~-~-~k)212 = O ( n ~  )" [A.,j 
k E Z , k # n , - n  kE  , k ¢ n , - n  

Therefore, ~n,t(x) has an expansion of the form 

(19) +~,j(x) ~- un,je i2~rnx + Vn,ie -i2rnz + h(x), 

where u., j  = (+n,j(x),ei2~'~:), v. , j  = (q!.,j(x),e-i2~n:), IIh(x)l I = O(1/n),  

(20) + Iv , l = 1 + 

Now using (16), (18), (20) in the system of equations (15), (17) we find asymp- 

totic formulas for eigenfunctions ql.,j (x) and eigenvalues A.,j of the operator 
L0 (q) with q(x) E L1 (0, 1), and prove that  if conditions (3) hold then the eigen- 
functions and associated functions of this operator form a Riesz basis in L2 (0, 1). 

THEOREM 1: Let the conditions (3) hold. Then: 

(a) All sufficiently large eigenvalues of  the operator Lo(q) are simple. They 

consists of two sequences {An,1 : n > N} and {An,: : n > N} satisfying 

( l n ln l~ ,  
(21) An,j = (2zrn) 2 + (-1)Jpn + 0 n / 

for j = 1, 2, where p~ = (q2~q_2,~) 1/2. 

The corresponding eigenfunction ~ , j  ( x ) satisfies 

(22) 

wh ere 

(23) 

(24) 

oL .e  - i 2 ~ r n x  ~n,j(x) = e i2rnz + n,3 + O(1/n),  

an,j "~ 1, 

(-1)Jpn + o ( l n ] n l ] ,  
OLn'J - -  q2-----~ \ n q 2 n  / 
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f o r j  = 1,2. 

(b) The root functions of  Lo(q) form a Riesz basis in L2(0, 1). 

Proo~ 

(25) 

(26) 

First we prove that if conditions (3) hold, then 

Un,j ~ Vn,j '~ 1, 

( l n l n l / ,  
~ , j  - (2nn) 2 = ajpn + O \  n / 

for j = 1, 2, where aj ~- ~1 and Un,j, Vn,j are defined in (19). From (15)-(18) 

we obtain the system of equations 

(27) ('~n,j -- (27rrt)2)Un,j ---- q2nVn,j + 0 ( ~ - ) ,  

( ln ln] ) .  
(28) (An,j - (27~n) 2)v~,j = q-2nUn, j  q- 0 \ T / 

It follows from (20) that at least one of the numbers [v~,jl, IVn,jl is greater than 

1 Then from (28) and (3) we obtain IAn, j -  (2~rn)21 < 1 Assume that  IVn,yl > ~. 

c71q-2nl. Moreover, the inequalities [Un,jl < 2 (see (20)), Ivn,jl > ½, and (27) 

imply that  I£~,j - (27rn)21 > c8[q2~[. Hence using these inequalities and (3) we 

obtain 

(29) An,j - (27rn) 2 ~" q2n ~ q--2n "" P~, lim In Inl _ 0. 
n--+~ rtpn 

This with (27) implies that  un,j "~ Vn,j. Therefore (25) follows from (20). 
Now dividing both sides of (27) and (28) by un,j q2n and ()~n,j - (27rn)2)u,~,j, 
respectively, we get 

(30) v~,j _ A n , j - ( 2 n n )  2 + o ( l n l n l )  _-_ q-:n ( ln tn] )  
Un,j q2n \ nq2n / An, j  Z ~ - n ) 2  + O \ nqen/" 

From here, using (29), we get (26). 

The proof of (a). Suppose A~,j (where n > N 7> 1) is multiple. There are 

two possible cases: 

1. There is an associated function ~ l j ( x )  corresponding to the eigenfunction 

~ n , j ( X ) ,  that is, 

(31) (Lo -- ) ~ n , j ) ~ l , j ( X )  : ~ n , j ( X ) .  

Since the boundary condition (2) for t = 0 is selfadjoint, ~n,j and q2n,j are an 

eigenvalue and an eigenfunction of the adjoint operator L~. Therefore, multi- 

plying both sides of (31) by ~n,y we get (kgn,j(x), kon,j) = 0. This with (19) 

implies the equality Un,jVn, j : O(1/n) ,  which contradicts (25). 
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2. There are two eigenfunctions corresponding to An,j. Then all solutions of 

the equation 
y" 

- + q ( x ) y  = )~n,jY 

are eigenfunctions. In particular, the solution 

y(x , /~n , j )  = e p'~'jx + O ( 1 / n )  = e 2 ~  + O ( 1 / n ) ,  

where Pn,j = ('~n,j) 1/2 = 2~rn + ( l /n)  (see page 52 of [3]), and (26)), is an 

eigenfunction. In (27), instead of using ~n,j, taking this eigenfunction we get 

Anj = (2~rn) 2 + 0 ( ~ ) ,  

which contradicts (29). Thus the eigenvalues A~,j for n > N are simple and 

satisfy (26). Now, in order to obtain (21) from (26) it remains to prove that 

al • a2, say al = -1,a~ = 1. Suppose al = a2 = -1.  Then (26), (27) yield 

(32) -PnUn,1 = q2nVn,1 + 0 - - - ~  / ,  -pnUn,2  = q2nVn,2 + 0 • 

Multiplying both sides of the first and second equalities by -v~,2 and Vn,1, 

respectively, and then summing the equalities, we get 

(lntn,) 
(33) un,xv~,2 - un,2vn,1 = 0 np,~ J 

On the other hand, since Au,j and ~ n , j  a r e  an eigenvalue and an eigenfunction 

of adjoint operator L~ and An,1 # An,2, we have 

(34) 0 ~--- (ff~n,1, ~]~n,2) : Un,lVn,2 + Un,2Vn,1 "r O(1/n) 

(see (19)). It follows from (33), (34), (29) that 

(ln In]) =o(1),  
~n ' lVn '2  • O k  n p n  / 

which contradicts (25). If we suppose that al = a2 = 1, then, in the same way, 

we obtain the same contradiction. Thus one of these numbers, say al, is -1  

and the other is 1. The formulas (21) are proved. Since An,1 satisfies (21), for 

j = 1, the first equality in (32) holds. Therefore 

(35) _ --Pn + o ln,n, l l L. 
?-tn,1 q2n ~" nq2n / 
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Denoting an,j = vn,j/unj and qon,j(x) = q~n,j(x)/un,j, from (19), (25) and (35) 

we obtain (22), (23) and (24) for j = 1. Taking into account that  An,2 satisfies 

(21) for j = 2, in the same way we get the proof of (22), (23) and (24) for j = 2. 

The proof of(b). Now we prove that  the eigenfunctions ~n,j =- ~o,j and asso- 

ciated functions ~n,jk (where n = 1,2,. .., a n d k  = 1,2,. . . ,s(n,j))  of Lo(q) form 

a Riesz basis in L2(0, 1). For every f(x)  E L2(0, 1), the asymptotic formulas 

(22), (23) yield 

N s(n,j) 2 2 oo 

(36) Z (  Z Zl(~,~,~)l~) + Z Z I(~,~o,J)a ~ < ~ .  

n=l  k=0 j = l  j = l n = N + l  

Let Xn,j =- X°,j and Xn,j,k where k = 1 ,2 , . . . ,  t(n,j) be the biorthonormal 

system of eigenfunctions and associated functions of L~). Clearly Xn,j(x) = 
~n,j(x)/(~n,j,~n,j) for n > N. Therefore, using (22), (23) we get 

N t(n,j) 2 2 

(37) Z (  52 Zl(~,~,~)l ~) + Z Z I(~,~,J)l ~ < ~ .  
n-----1 k=O j ~ l  j = l  n=N-I-1 

Since 
{~kn,j: k = 0 , 1 , 2 , . . . , s ( n , j ) ; j  = 1,2;n = 1,2, . . .},  

and the biorthonormal system 

{Xkn,j: k = 0 , 1 , 2 , . . . , t ( n , j ) ; j  = 1,2;n = 1,2, . . .}  

are total (see chap. 1, sec. 3 of [2]), by the well-known theorem of Bari (see 

[1], chap. 6), the inequalities (36) and (37) imply that the system of the eigen- 

functions and associated functions of Lo(q) forms a Riesz basis in L2(0, 1). The 

theorem is proved, l 

If instead of (3), (7), and (9) we use (4), (8) and 

(38) (]AN,j -- (27rn + Tr )2 ) ( (~N , j ( x ) , e  i r (2n+l )x )  = ( q ( X ) ~ N , j ( x ) , e i T r ( 2 n + l ) x ) ,  

where ~)N,j(x) is a normalized eigenfunction of L,(q), and arguing as in the 

proof of Theorem 1, we obtain 

THEOREM 2: Let conditions (4) hold. Then: 
(a) All sufficiently large eigenvalues of the operator L~ are simple. They 

consist of two sequences {Pn,1 : n > N} and {#n,~ : n > N} satisfying 

, ( lnlnl)  
(39) #n,j = (27rn + zr) 2 + (-1)3pn + O - - - ~ /  
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! 

for j = 1,2, where Pn = (q2n+lq-2n-1) 1/2" The corresponding eigenfunction 

C n j ( z )  satisfies 

(40) ¢nj(X) = e i(2~n+~)~ + a' .e -i(2"~n+~)x n,j + O(1/n) 

for j = 1, 2, where 

, , (-1)J___pp'n + ( In [hi ) .  
Oln, j r,, 1, O~n'J -- q2n+l O\nq2n+l / 

(b) The root functions of L,(q) form a Riesz basis in L2(0, 1). 

Now to derive the asymptotic formulas of arbitrary order for eigenfunctions 

and eigenvalues of the operators Lo(q), Lr(q) with q(x) E LI(0, 1), we define 

successively the following functions: 

Foj = O, Goj = Pn, En,m,j = (2~rn) 2 + Fm,j + (-1)JGm,j,  

Fk,j = 2 (Ak(En,k-i , j)  + A'k ( En,k- l,j ) ) , 

ak,j  ---- 

1 ' 2 , ! 
[ '~(Ak(fn,k- l , j ) --Ak(En,k-l , j ) )  +(Bk(En,k-l , j)-kq2n)(Bk(En,k-l , j)+q-2n)] 2 

for m = 0 ,1 ,2 , . . . ,  and k = 1,2 , . . . ,  where j = 1,2 and the functions A'k, Ak 
are defined in (15), (17). Moreover, we use the functions Am, B*  which are 
obtained from Am, Bm respectively by replacing qnl with e i2r(n-nl)x. 

THEOREM 3: If  conditions (3)hold, then the eigenvalue An,j and the eigenfunc- 

tion ~n,j (x) of  Lo (q) satisfy the following formulas: 

, O ln[n[ m+~ 
(41) A n , j = E n m , j +  ( ( - - ~ )  ) ,  

= 

(42) 
-[-O~n,je -i2"nx -[- A *  (Sn,m,j) -[- Oln,jUm(Sn,m,j ) q- O ( /  \ \ { l n n )  re+l) ei27rnx 

for j = 1, 2 and m = 1, 2 , . . . ,  where 

v~,__ 2 _ Fro,3 + (-1)3Gm,j - Am(En ,~ j )  + ( l ( l n l n ] ) m + l )  
an,j -- Un,j q2n + Bm(En,m,j) O~q2~ \ n / /" 

I f  conditions (4) hold, then the eigenva/ue #n,j and the eigenfunction ¢,~,j(x) 
of L~(q) satisfy formulas which are similar to (41) and (42). 
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Proo~ Arguing as in the proof of (30), using (15), (17) instead of (27), (28), 

and denoting ~ = An,j - (27rn) 2, we get 

(43) 

Vn,j 
Un,j 

---- /~- Am(/~n,j) +O(~2 (ln]n]l'~+l ) 
(q2n q- Bm()~n,j)) " n J 
(q-2n + B:(An, j ) )  ( 1  (ln[n[)m+l) 

= A - A ~ ( A ~ , j )  + O  ~ ,  n / /" 

Solving this square equation with respect to A we obtain 

(44) + (B.~(Anj) + q2,d(B'.~(A,~,j) + q-2~)) + 0 q2,~ 

Here, the upper and lower sign is taken for j = 1 and j = 2, respectively, since 

the expression in the square brackets is 

q2nq-2n n t- O ( q 2 n ~  - )  = q2nq-2n(1 + o(1)) 

(see (3), (16), (18)), and (21) holds. Thus in (44) the 7= can be replaced by 

( -1 )  j.  Now we prove (41) by induction. It is proved for m = 1 (see (21)). 

Assume that it is true for m = k - 1. Substituting the value of ,'~n,j, given by 

this formula for m = k - 1, in the right-hand side of (44) for m = k and using 

the relations 

(45) 

Ak(En,k-l,j "l'- O( ( l n  I n [ ~ k ) ) :  Ak(gn,k-l,j) "t'- O ( ( ~ _ ~ ) k + l ) ,  
\ n / 

' , o( ( ln[n[~ k+l'} 

ln}n I k o( ( ln ln l~k+l  ) 
B k ( E n , k - l , j - t ' - O ( ( T )  )) : Bk(En,k-l,j)"t" \ - - ~ /  / '  

, ln[n[ k , o(( ln[n[)k+l  

we get the proof of (41) for m = k. Note that the validity of these relations can 

be easily verified by using the obvious equality 

E ~ En,k-l,j ln._P__~kl _ ~1 . . . .  + O ( (  n ) ) - ( 2 1 r ( n - n l ) )  2 
n l  ~O,2n 

0 In In I k+l --((n) ) 

1 
En,k-l,y - (2~r(n - nl)) 2 
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Now we prove (42). Writing the decomposition of ~n,j(x) as 

{e i21r(n-nl)x :h i  E Z}, 

we obtain 

it "C i27rnx (46) ~ , j ( X )  -- ~,3 = 
oo 

n l ~ - o o ,  
,LI~O 

The right-hand side of (46) can be obtained from the right-hand side of (12) 

by replacing qnl with e i2È(n-nl)x. Since we obtained (15) from (12) by iteration, 

by doing the same iteration we obtain 

ff2n, j (x)  :Un,je i2~nx T Vn,je -i2~rnx 

(47) ((Inlnl)m+11 
+ u~,jA*~(A~,j) + v~,yB*(An,j) + 0 - - - ~ /  J 

from (46). Dividing both sides of (47) by Un,j and using (43), (41), (45) we get 

(42). 
To obtain the asymptotic formulas for the eigenvalue #n,j and the eigen- 

function tn , j (x)  of L~(q), we use (4), (8), (38) and Theorem 2 instead of (3), 

(7), (9) and Theorem 1 and repeat the proof of (41) and (42). | 
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